Deep Canonically Correlated LSTMs

نویسندگان

  • Neil Mallinar
  • Corbin Rosset
چکیده

We examine Deep Canonically Correlated LSTMs as a way to learn nonlinear transformations of variable length sequences and embed them into a correlated, fixed dimensional space. We use LSTMs to transform multi-view time-series data non-linearly while learning temporal relationships within the data. We then perform correlation analysis on the outputs of these neural networks to find a correlated subspace through which we get our final representation via projection. This work follows from previous work done on Deep Canonical Correlation (DCCA), in which deep feed-forward neural networks were used to learn nonlinear transformations of data while maximizing correlation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Fusion LSTMs for Text Semantic Matching

Recently, there is rising interest in modelling the interactions of text pair with deep neural networks. In this paper, we propose a model of deep fusion LSTMs (DF-LSTMs) to model the strong interaction of text pair in a recursive matching way. Specifically, DF-LSTMs consist of two interdependent LSTMs, each of which models a sequence under the influence of another. We also use external memory ...

متن کامل

Bayesian LSTMs in medicine

The medical field stands to see significant benefits from the recent advances in deep learning. Knowing the uncertainty in the decision made by any machine learning algorithm is of utmost importance for medical practitioners. This study demonstrates the utility of using Bayesian LSTMs for classification of medical time series. Four medical time series datasets are used to show the accuracy impr...

متن کامل

A Way out of the Odyssey: Analyzing and Combining Recent Insights for LSTMs

LSTMs have become a basic building block for many deep NLP models. In recent years, many improvements and variations have been proposed for deep sequence models in general, and LSTMs in particular. We propose and analyze a series of augmentations and modifications to LSTM networks resulting in improved performance for text classification datasets. We observe compounding improvements on traditio...

متن کامل

Modelling Interaction of Sentence Pair with Coupled-LSTMs

Recently, there is rising interest in modelling the interactions of two sentences with deep neural networks. However, most of the existing methods encode two sequences with separate encoders, in which a sentence is encoded with little or no information from the other sentence. In this paper, we propose a deep architecture to model the strong interaction of sentence pair with two coupled-LSTMs. ...

متن کامل

A Way out of the Odyssey: Analyzing

LSTMs have become a basic building block for many deep NLP models. In recent years, many improvements and variations have been proposed for deep sequence models in general, and LSTMs in particular. We propose and analyze a series of augmentations and modifications to LSTM networks resulting in improved performance for text classification datasets. We observe compounding improvements on traditio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.05407  شماره 

صفحات  -

تاریخ انتشار 2018